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Abstract

We define various types of Fibonacci and Lucas peseudoprimes and
prove some theorems on these pseudoprimes. In particular, we will
discuss the existence of Fibonacci pseudoprimes by setting some
parameters.
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1. Introduction
We know that every non-absolute compositeness test series rise to a class of Pseudoprimes. The same, we

can see in the case of Fibonacci number [1], which are recursively defined by
f,=0,f =landf, =1 ,+f ,¥vn>2
i.e0,11,2,35813,...
the sequence corresponding to (P,Q) =(1,-1) U,(1,—-1) =0 and U, (L,—1) =—1 was first consider by
Fibonacci, and it begins as

011234,5813,...323...

Since Fibonacci number grow quite large, in order to evaluate fn efficiently we can use matrix identity.

fy 1 11
=F , where F =
fy 0 10

Justification: The above identity can be proved by induction.
For instance, the first FibonacciPseudoprime is 323
i.e. 323=17X19,
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Now, we will show that 323 f,,, by successive squaring algorithm,

— -2 — —_

eo_ 117 [2
10 1] [0 1]

F4_‘2 11" [5 3]
o 1] |2 1]

FB_'5 3] [34 21
13 2| |21 13

cio_[34 21}2_{305 18}

21 13| |18 287
L, 305 187 [ 2 320
F = =
|18 287] |320 5 |
o [ 2 320" [13 320
F = =
1320 5 | |320 34|
Fin_ () = 287 305
305 305

F256:(F128)2:|:5 3}
3 2

F324 :F256 XF64X|:4

[5 3][13 320][5 3
13 2]|320 34|32
ol
1_

o -

By the above results we say the 323| f,,,

Note: one can try the same, using larger Fibonacci Pseudoprimes in the case of
37718913827and 4181

2. Finding with Justifications
As we shown/discussed in earlier introduction, the following theorems are defined:

Theorem 2.1: P| f ,if P =+1(mod10)and P| f ,, if P =+3(mod10)

Proof: Leaving for readers.
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Let us discuss the following important theorems

Theorem 2.2:  with parameters P =1and Q =—1, there do not exist even Fibonacci Pseudoprime.

Before solving this theorem, we define the following.

Observation#l: A=P?—P —2Q admits an odd prime divisor p =4k (k € z*) and Q ={-11}

Justification: A= (4k)* -4k —2Q
A=2(mod4),if A==+2 then A admits an odd prime divisor.

Observation#2: If p=4k+1 (kez) and Q={-11} then the value A=P?—P—2Q admits an

odd prime divisor P # 3, unless (P,Q) =(1,-1), (P,Q)=(11) or (P,Q)=(51).

Justification: By observation #1, we have P =1(mod4) and A=2(mod4) if Q=-1
—P?-P+2=1+2iffP =1

Now, A =+1(mod3)

Here A admits an odd prime divisor P =3 and P =1

orfor Q=1,wehave P2—P-2=+21ffP =1

Here A=0(mod3) when P =2(mod3)

Here A admits an odd prime divisor P = 3.

Observation#3: let {a,} is defined by recurrence relation a, , =a,’ —2, k >1

If a, =2I(I € ), then a, =2(mod2“), k >1

If &, =21 +1,then a_=-1(mod2"), k >1.

3. Justification
Let us consider that a, = a(mod2")

Here k>1 and ¢ =—1 or 2
Clearly, at-2=a
a —a=2"t
or a =a+2t (tez)
And a,, =a, 2
= (@+2"tf -2
= o +(2°1) + 202"t -2
= (a? —2)+ 2} ot +172+1)
=a’ —2:a(m0d2k*l)

Now, we can define some lemmas based on above observations:
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Lemma#1: For P =1=Q, no every Fibonacci Pseudo Prime exists.
Proof: Let us consider sequence {V,,} with recurrence relation V, =2, V, =1
V.=V, ,-V,,
V=1
V,=V,-V,=1-2=-1
V,=V,-V,=-1-1=-2
V,=V,-V,=-2+1=-1
V.=V,-V,=-1+2=1
V=V, -V, =1-(-)=2
V,=V,-V,=2-1=1
Vo=V, -V, =1-2=-1
{V, }is periodic with period 6 .
ie. Vg =2, k=0
and V., =-1, k>0
.. Every Fibonacci Pseudo Prime does not exist. [2],[3] and [4]
Lemma#2: For n=2% k>2, Q={-11}iff P = 2(mod2*) or P =-1(mod2").
Proof: For N>0,V,, =V ?—2Q" from observation #3,
we have a, =a,° -2, k>1 —(1)
V,, =V.? —2Q deduce that Vo =V2k2 —2(+1)*
=V,*-2 k=1
Thus a, =V, satisfies observation #3 or Equation (1)
Also a =V, :PZ—ZQ
= P? =P(mod?2)
By observation #3; V. = 2(mod 2X)if k >1and P =2l
Then V,, = ~1(mod2*)

Lemma#3: If P=0(mod4) or P =1(mod4) with (P,Q) # (5,1) and P # 1then there exists an

odd prime number P such that n = 2P is an even number.
Proof: We know that;

(a)1f P=2l thenV, =0(mod2); n>0
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(b) It P =21 +1then V, =0(mod2) iff n = 0(mod3)
(C)If P is prime, then V,, =V, (modP)for n>0.
Let us assume that P =0(mod4) or P =1(mod4) and the P is odd prime.
Here  V,, =P(mod2P) issimilar to V,, = P(mod2) —>(2)
and  V,, =P(modP) —(3)
by (a) and (b), the relation (2) is true

by (C) relation (3) holds.

Proof: The cited above observations/Lemma’s concludes the theorem.

APPENDIX

l. Conditional Identities

We can define the following identities:

} U =PU_,-QU_,(n>2),U=0U,=1
V., =PV, -QV, ,(n=2)V,=2V, =p

I, U, =UV,
V,, =V,?-2Q"

1. U,.,,=UV.-QU, .
V,..=V.V.-Q"V,_ . (for m>b)

v.  Ug,=UU,,-QU, U,
V... =(V\V +DU V. )/2

V. DU, =2V, —PV,
V. =2U_,-PU,

vi.  U?=U, U, +Q""
V.2=DU, > +4Q"

vi. UV, -UV,=2Q"U,_, (m=>n)

UV +UV =2U_.

vi. 2", =(n, Jp"'D° +(nc3)p"*3Dl +(nC5)p”*5D2 +...
2"V = (nCO )p"D0 +(nC2 )p”’le +(nc4 )p"*“D2 + .

IX. U, =V, ;(modQ)
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V, =P"(modQ)

X. V, =P(modP)
XI. U, =V, ,+QV, ,+Q%_ . +..+ (lastsum and); where
Qm—_z if m=Even
Lastsumand= {~, _,
1. Fibonacci and Lucas numbers for P =1,Q = -1
Fibonacci number Lucas number
U(0)=1,U(1)=1 V(0)=2,V(1)=1
U(2)=1 V(2)=3
U(3)=2 V(3)=4
U(4)=3 V(4)=7
U(5)=5 V(5)=11
uU(6)=8 V(6)=18
U(7)=13 V(7)=19
U(8)=21 \/(8)=47
U(9)=34 V(9)=76
U(10)=55 V(10)=123
U(11)=89 V(11)=199
U(12)=144 V(12)=322
U(13)=233 V(13)=521
U(14)=377 V(14)=843
U(15)=610 V(15)=1364
U(16)=987 V/(16)=2207
U(17)=1597 V(17)=3571
U(18)=2584 V(18)=5778
U(19)=4181 V(19)=9349
U(20)=6765 V/(20)=15127
U(21)=10946 V/(21)=24476
U(22)=17711 V(22)=39603
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